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Abstract Landslide susceptibility maps are vital for disaster management and for plan-

ning development activities in the mountainous country like Nepal. In the present study,

landslide susceptibility assessment of Mugling–Narayanghat road and its surrounding area

is made using bivariate (certainty factor and index of entropy) and multivariate (logistic

regression) models. At first, a landslide inventory map was prepared using earlier reports

and aerial photographs as well as by carrying out field survey. As a result, 321 landslides

were mapped and out of which 241 (75 %) were randomly selected for building landslide

susceptibility models, while the remaining 80 (25 %) were used for validating the models.

The effectiveness of landslide susceptibility assessment using GIS and statistics is based on

appropriate selection of the factors which play a dominant role in slope stability. In this

case study, the following landslide conditioning factors were evaluated: slope gradient;

slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and

roads; topographic wetness index; stream power index; and sediment transport index.
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These factors were prepared from topographic map, drainage map, road map, and the

geological map. Finally, the validation of landslide susceptibility map was carried out

using receiver operating characteristic (ROC) curves. The ROC plot estimation results

showed that the susceptibility map using index of entropy model with AUC value of

0.9016 has highest prediction accuracy of 90.16 %. Similarly, the susceptibility maps

produced using logistic regression model and certainty factor model showed 86.29 and

83.57 % of prediction accuracy, respectively. Furthermore, the ROC plot showed that the

success rate of all the three models performed more than 80 % accuracy (i.e. 89.15 % for

IOE model, 89.10 % for LR model and 87.21 % for CF model). Hence, it is concluded that

all the models employed in this study showed reasonably good accuracy in predicting the

landslide susceptibility of Mugling–Narayanghat road section. These landslide suscepti-

bility maps can be used for preliminary land use planning and hazard mitigation purpose.

Keywords Landslides � Susceptibility � Index of entropy � Certainty factor �
Logistic regression � Geographic information systems (GIS) � Remote sensing � Nepal

1 Introduction

Nepal lies at the center of 2,400-km-long Himalayan mountain range, which is one of the

tectonically most active zones on earth. Among the various land degradation process

prevalent in the Himalaya, landslides are one of the most significant phenomena (Ahmad

and Joshi 2010) as this region is tectonically very unstable with rugged topography,

unstable geological structures, soft and fragile rocks, common earthquakes, along with

heavy and prolonged rainfalls during monsoon periods (Deoja et al. 1991; Dhital 2000;

DPTC 1996). The study of landslides has drawn worldwide attention mainly due to

increasing awareness of its socio-economic impact as well as the increasing pressure of

urbanization on the mountain environment (Aleotti and Chowdhury 1999). In Nepal, a

significant number of landslides occur each year (as many as 12,000). The impact of

artificial structures and human interventions on mountain slopes followed by expansion of

agricultural land and watershed management and overgrazing has compounded the land-

slide disaster problem in the country (Rajbhandari et al. 2002).

The Mugling–Narayanghat road is one of the vital links of the strategic road network in

Nepal. About two-thirds of the highway runs through the right bank of the Trishuli River,

and hence, it is vulnerable both to toe cutting by the river and debris deposition by cross

drains (Adhikari 2009). This road corridor was severely affected by an extreme rainfall of

July 29–30, 2003. The 24-h accumulated rainfall recorded at Bharatpur and Devghat sta-

tions was 364 mm and 446 mm, respectively (Adhikari 2009). The incessant and intense

rainfall was the causative factor to trigger numerous slides and slope failures along the road

section and its surrounding areas. This situation was further worsened during the monsoon

of 2006, blocking the traffic for several weeks (DWIDP 2009). To minimize the losses of

human life and economic value, potential landslide-prone areas should, therefore, be

identified. In this respect, landslide susceptibility assessment can provide valuable infor-

mation essential for hazard mitigation through proper project planning and implementation.

Landslide susceptibility is the likelihood of a landslide occurrence in an area on the basis

of local terrain conditions (Brabb 1984). It is the degree to which a terrain can be affected by

slopemovements, that is, an estimate of ‘‘where’’ landslides are likely to occur. The advent of

remote sensing and GIS has made the landslide susceptibility mapping easier these days (Jia

et al. 2010; Karimi Nasab et al. 2010; Bednarik et al. 2012; Wang et al. 2011; Pradhan et al.
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2011). Different methods to prepare landslide susceptibility and hazardmaps using statistical

methods and GIS tools were developed in the last decade (Van Westen et al. 2003; Guzzetti

et al. 2005). The most common approaches proposed in the literature are bivariate (Chung

and Fabbri 1999; Saha et al. 2005; Pradhan et al. 2006; Magliulo et al. 2008; Pareek et al.

2010; Pradhan and Youssef 2010; Bednarik et al. 2010) and multivariate (Akgün et al. 2011;

Ayalew andYamagishi 2005; Can et al. 2005; Lee et al. 2007; Gorum et al. 2008; Nefeslioglu

et al. 2008; Pradhan 2010a; Pradhan et al. 2008; Tunusluoglu et al. 2008; Pradhan and Lee

2010c; Oh et al. 2011; Choi et al. 2012), statistical techniques such as the logistic regression

(LR). Other different methods have been proposed by several investigators, including

weights-of-evidencemethods (Bonham-Carter 1991; Neuhäuser and Terhorst 2007; Pradhan

et al. 2010d; Regmi et al. 2010a; Pourghasemi et al. 2012a, b), modified Bayesian estimation

(Chung and Fabbri 1999), weighting factors, weighted linear combinations of instability

factors (Ayalew et al. 2004), landside nominal risk factors (Saha et al. 2005), probabilistic-

based frequency ratio model (Chung and Fabbri 2003, 2005; Lee and Pradhan 2006, 2007;

Akgün et al. 2008; Pradhan et al. 2010c 2011, 2012), certainty factors (Pourghasemi et al.

2012a), information values (Saha et al. 2005), modified Bayesian estimation (Chung and

Fabbri 1999). Among recent models for landslide susceptibility mapping, soft computing

techniques such as neuro-fuzzy (Sezer et al. 2011; Vahidnia et al. 2010; Oh and Pradhan

2011), artificial neural networks (Bui et al. 2012a; Lee et al. 2007; Pradhan and Lee 2009,

2010a, b; Pradhan et al. 2010a, b, d; Pradhan and Buchroithner 2010; Pradhan and Pirasteh

2010; Pradhan 2011a; Poudyal et al. 2010; Yilmaz 2009a, b, 2010a, b; Choi et al. 2012; Zarea

et al. 2012), fuzzy-logic (Akgün et al. 2012; Bui et al. 2012b; Ercanoglu and Gokceoglu

2002; Kanungo et al. 2008; Pradhan 2010b, 2010c, 2011b; Pradhan et al. 2009; Pourghasemi

et al. 2012c) can be seen in the literature. Additionally, there exists some other data mining

techniques such as support vector machine (SVM) (Bui et al. 2012c; Brenning 2005; Yilmaz

2010a), decision tree methods (Saito et al. 2009; Nefeslioglu et al. 2010), spatial decision

support system (SDSS) (Wan 2009), spatial multi-criteria evaluation (SMCE) (Pourghasemi

et al. 2012d), index of entropy (Bednarik et al. 2010; Constantin et al. 2011; Pourghasemi

et al. 2012e), evidential belief function (EBF) (Althuwaynee et al. 2012), etc. to evaluate the

landslide susceptibility, to overcome shortcomings in the above-mentioned methods.

The aim of this paper is to produce landslide susceptibility map of Mugling–Narayanghat

road corridor using two bivariate statistical models [certainty factor (CF), index of entropy

(IOE)] and onemultivariate statisticalmodel [logistic regression (LR)]. Thesemodels exploit

information obtained from the inventorymap to predict where landslidesmay occur in future.

These models are tested, and the results are discussed. In literature, various bivariate and

multivariate approaches for landslide susceptibility exist. However, a comparison of these

approaches is not commonly encountered. This contribution provides originality to this study.

2 The study area

The 36-km-long Mugling–Narayanghat road is located in a mountainous terrain of Central

Nepal, in the Chitwan District of the Narayani Zone. The study area (longitude 84�2600000

E to 84�3403000 E and latitude 27�5103000 N to 27�4503000’ N) falls within the topographical

map 2784-03C (Mugling) and 2784-02D (Jugedi Bajar) and covers an area of about

65 km2 (Fig. 1). The minimum and maximum altitudes of the area vary from 200 m at

Jugedi Bajar and 1,380 m in the vicinity of Mulethumki and Chaur.

Brunsden et al. (1975) were one of the first to develop a geomorphological map of a

road corridor in Nepal. Kojan (1978) studied the landslide problems along the
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Godavari–Dandeldhura road. He identified the main hazardous areas along the road section

and recommended various methods of slope stabilization. Wagner (1981) was the first to

prepare a landslide and gully erosion hazard map based on field observation in Nepal. Many

researchers tried to establish linkage between landslides and human activities (Gerrard

1994). In Himalayas, this link forms a major component of what is known as Himalayan

Environmental Degradation Theory (Ives and Messerli 1981). From the airborne survey of

Nepal, Laban (1979) concluded that geological structure and lithology accounted for more

than 70 % of landslides occurrences in this region. Deoja et al. (1991) further developed this

method and proposed various ratings for attributes such as rock type, soil type, slope angle,

relative relief, groundwater, surface hydrology, folds, and faults. The first detailed landslide

hazard mapping was carried out along the Tulsipur–Sallyan, Ghorahi–Piuthan, and Piuthan–

Libang roads of mid-west Nepal (DoR/USAID 1986). These maps were derived from

engineering geological maps of the road alignment on a scale of 1:5,000, aerial photo

interpretation, and kinematic analysis of joints. Feasibility- and detailed-stage landslide

hazard mappings were carried out along the Baitadi–Darchula road alignment in far west

Nepal (Dhital et al. 1991). According to Shroder and Bishop (1998), landslides in the

Himalaya are scale-dependent and range from massive extent of a whole mountain range

(gravity tectonics) through the failure of single peaks to very minor slope failures. Gerrard

and Gardner (2000a, b) suggested that there is a clear anthropogenic influence in the

occurrence of landslides in themountainous areas of Nepal. Recently, many researchers have

applied various GIS-based statistical techniques in the landslide susceptibility mapping in

various parts of Nepal Himalaya (Dhital et al. 2006; Dahal et al. 2008, 2012; Poudyal et al.

2010; Regmi et al. 2010b; Dhakal et al. 2000). Some work has been done on the role of rock

Fig. 1 Study area with the distribution of landslides
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weathering and clay minerals in landslide formation in Nepal Himalaya (Regmi et al. 2012

and Hasegawa et al. 2009). Rainfall threshold for landslides in certain part of Nepal was

calculated by Dahal and Hasegawa (2008). Petley et al. (2006) analyzed a database of

landslide fatalities in Nepal from 1978 to 2005 and found that there is a high level of

variability in the occurrence of landslides from year to year, but its overall trend is increasing.

3 Geological and morphological settings

The Mugling–Narayanghat road passes through the Precambrian Lesser Himalayan rocks

of the Nawakot Complex (Stöcklin and Bhattarai 1978; Stöcklin 1980), the Miocene

Siwaliks and Holocene alluvial deposits (Fig. 2). The Nawakot Complex is divided into the

Lower Nawakot Group and Upper Nawakot Group, and along this road section, the rocks

from both the groups are observed. The main rock types are mudstones, sandstones,

limestones, dolomites, slates, phyllites, quartzites, and amphibolites. A majority of insta-

bilities were observed within the Nourpul Formation. The Kuncha Formation, Fagfog

Quartzite, Dandagaun Phyllite, Nourpul Formation, and Dhading Dolomite are from the

Lower Nawakot Group, while Benighat Slates represents the Upper Nawakot Group. The

Purebesi Quartzite Member is a distinct quartzite zone, overlying the phyllites of the

Dandagaun Formation, and forms the basal part of the Nourpul Formation. Apart from this,

some amphibolite bands are also observed within the Nourpul Formation. The Siwalik

Fig. 2 Geological map of the study area
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Group in the study area consists of the Lower Siwaliks and Middle Siwaliks (Ganser 1964).

The Holocene deposits consist of river terraces of different ages. The main rock types are

mudstones, sandstones, limestones, dolomites, slates, phyllites, quartzites, and amphibo-

lites. Majority of instabilities were observed within Nourpul Formation rocks. The main

geological structures that demarcate the study area are the Main Boundary Thrust (MBT),

Jugadi Thrust (JT), Kamalpur Thrust (KT), Simaltal Thrust (ST), and Virkuna Thrust (VT).

All the thrusts are trending in east–west direction. The MBT is a major fault separating the

Lesser Himalaya to the north from the Siwaliks to the South (Fig. 2).

The highway between km 23 and km 28 lies within this thrust zone, where thick

colluviums and plenty of seepage are observed. Geomorphologically, Nepal is divided into

the following eight units running east–west: the Terai, Churia Range, Dun Valley, Ma-

habharat Range, Midland, Fore Himalaya, Higher Himalaya, Inner and Trans Himalaya

(Hagen 1969) and the Mugling–Narayanghat road lies within the Mahabharat Range,

Churia Range, and Dun Valley. The southernmost tableland belongs to the Dun Valley and

is covered by various alluvial deposits. Here, the slope is gentle and the elevation is

subdued. As the alluvium covers most of the Siwaliks composing the Churia Range, they

are exposed only on the riverbanks, where the stream erosion is intense. Most of the study

area belongs to the Mahabharat Range, which lies to the north of the Churia Range and

consists of higher mountains with steeper slopes.

4 Landslide inventory map

Understanding the role of individual factors controlling landslide location, geographical

pattern, and spatial density is important to predict where landslides can occur in the future,

that is, to ascertain landslide susceptibility (Varnes 1984; Soeters and Van Westen 1996;

Guzzetti et al. 1999, 2005). A landslide inventory map is one that identifies the definite

location of the existing landslides along with its type and the time of occurrence (Wie-

czorek 1984; Einstein 1988; Soeters and van Westen 1996). The first step in landslide

susceptibility assessments is to acquire information about the landslides that have occurred

in the past. This stage is considered as the fundamental part of the landslide hazard studies

(Guzzetti et al. 1999; Ercanoglu and Gokceoglu 2004). Since landslide occurrences in the

past and present are keys to spatial prediction in future (Guzzetti et al. 1999), a landslide

inventory map is a prerequisite for such a study. A landslide inventory map provides the

basic information for evaluating landslide hazards or risk. Accurate detection of the

location of landslides is very important for probabilistic landslide susceptibility analysis.

The landslides on the Mugling–Narayanghat road were identified from the interpretation of

aerial photographs (taken after the monsoon of 2003), satellite images and were verified in

the field. In total, 321 landslides were mapped (Fig. 1) and subsequently digitized for

further analysis. The mapped landslides cover an area of 2.05 km2, which constitutes

3.15 % of the entire study area, where the dominant failure is of rotational type (Fig. 3).

Rock falls, debris flow, and topples are also observed along the highway (Fig. 3). From

these landslides, 241 (75 %) randomly selected instabilities were taken for making land-

slide susceptibility models and 80 (25 %) were used for validating the models.

5 Landslide conditioning factors

The factors controlling instabilities considered in the present study are slope gradient, slope

aspect, plan curvature, altitude, stream power index (SPI), topographic wetness index
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(TWI), stream sediment transport index (STI), geology, land use, distance from faults,

distance from rivers, and distance from roads. A short description of each thematic map is

given below. The geomorphic factors like slope gradient, slope aspect, plan curvature,

altitude, SPI, TWI, and SPI were obtained from the DEM produced by the topographic map

of 1:25,000 scale provided by the Department of Survey, Nepal. The land use map was also

Fig. 3 Figure showing different types of landslides observed in the study area. a Thick debris deposit which

buried the bridge over the road section, at 21 ? 500 km; b debris slide observed at 20 ? 800 km of the road

section (L2); c Landslide at 23 ? 760 km of the road section; d rock topple observed at the upstream of

Keraghari Khola, at 21 ? 560 km; e slope failure observed at 30 ? 500 km

Nat Hazards (2013) 65:135–165 141
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provided by the Department of Survey, Nepal. Geological map was prepared in the field

based on the geological map of Central Nepal (Stöcklin and Bhattarai 1978; Stöcklin

1980). The geological maps were also useful for the delineation of major faults in the study

area. The distance from rivers and the distance from roads maps were produced, respec-

tively, from the drainage map and the topographic map using ArcGIS 9.3. Brief description

of each thematic map used in the present study is given below.

5.1 Slope gradient

The slope gradient is one of the most important factors that influence slope stability

(Bednarik et al. 2009). In general, stability of slope is the interplay of slope angle with

material properties such as friction angle, permeability, and cohesion. Slope gradient map

was derived from DEM of 20 9 20 (m) grid size. The original slope angle values vary

between 0� and 79.54�, and the values were reclassified into 5 categories (Fig. 4a) which

are most widely used subdivisions in Nepal and other southeast Asian countries (Pradhan

and Lee 2010a; Dhital et al. 2006; Saha et al. 2005).

5.2 Slope aspect

The slope aspect or the direction of maximum slope of the terrain surface is divided into

nine classes (Fig. 4b). Although the relation between the aspect and the mass movement

has been investigated for a long time, no general decision could have been given regarding

the aspect–landslide relationship (Ercanoglu et al. 2004). However, it is emphasized that

the aspect is one of the significant factors producing the landslide susceptibility maps (Lee

et al. 2004. Physically, the aspect is related to the parameters such as the orientation of

discontinuities controlling landslides, precipitation, wind impact, and exposition to sun-

light (Ercanoglu et al. 2004).

5.3 Plan curvature

The curvature values represent the morphology of the topography (Lee and Min 2001; Lee

et al. 2004; Erener and Düzgün 2010). The curvature maps (Fig. 4c) were obtained from

the second derivative of the surface.

5.4 Altitude

Altitude is another frequently used parameter for landslide susceptibility studies. It is stated

that the landslides have more tendency to occur at higher elevations (Ercanoglu et al.

2004). In the study area, the elevation ranges between 200 and 1,380 m. The elevation

values were divided into eight categories with an interval of 150 m. (Fig. 4d).

5.5 Stream power index (SPI)

SPI measures the erosion power of the stream and is also considered as a factor contributing

toward stability within the study area. The SPI can be defined as (Moore and Grayson 1991):

SPI ¼ As tan b ð1Þ

where As is the specific catchment area and b is the local slope gradient measured in

degrees. In the present study, SPI is divided into 4 classes (Fig. 4e).
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5.6 Topographic wetness index (TWI)

The topographic wetness index (TWI), which combines local upslope contributing area and

the entire slope, is commonly used to quantify topographic control on hydrological pro-

cesses. It is expressed as:

Fig. 4 Thematic maps used in this study. a Slope map (in degree); b Aspect map; c Curvature map;

d Elevation map (in m); e Stream power Index map; f Topographic wetness index map; g Sediment transport

index map; h Distance to drainage map; i Distance to road map; j Distance to fault map; k Land use map
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123



TWI ¼ ln
a

tanb

� �

ð2Þ

where a is the cumulative upslope area draining through a point (per unit contour length)

and tanb is the slope angle at the point. It affects the spatial distribution of soil moisture,

and the groundwater flow often follows surface topography. In this study, TWI was con-

sidered as another contributing factor (Fig. 4f).

Fig. 4 continued
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5.7 Sediment transport index (STI)

The sediment transport index (STI) characterizes the process of erosion and deposition. In

the present study, STI is divided into 4 classes (Fig. 4g).

5.8 Land use map

Land use also plays a significant role in the stability of slope. The land covered by forest

regulates continuous water flow and water infiltrates regularly, whereas the cultivated land

affects the slope stability due to saturation of covered soil. Based on field observations and

mapping, the following nine classes are considered: cutting, cultivation, forest, orchard,

grass, bush, sand barren, and river (Fig. 4k). Bush (37 %) covers the highest amount of

area followed by cutting (31 %) and cultivation lands (29 %).

5.9 Lithology

Lithology plays an important role in landslide susceptibility studies because different

geological units have different susceptibilities to active geomorphic processes of the

Himalaya (Pradhan et al. 2006). The sediments and rocks in this watershed belong to

Holocence alluvial deposits, Miocene Siwaliks, and Precambrian Lesser Himalaya and

consist of sandstone, siltstone, mudstone, conglomerate, limestone, dolomite, slate, phyl-

lite, quartzite, and amphibolites (Fig. 2).

5.10 Distance from faults

Faults are the tectonic breaks that usually decrease the rock strength. These dislocations are

responsible for triggering a large number of landslides on the Mugling–Narayanghat road.

Fault lines were derived from the geological map of the region. In the present study, the

distance from fault map was reclassified into 6 divisions (Fig. 4j).

5.11 Distance from rivers

Runoff plays an important role as a triggering factor for landslides. On the basis of rivers

and streams, a map of proximity to drainage was generated using Arc GIS 9.3. In the

present study, the distance from river map is divided into 5 categories (4 h).

5.12 Distance from roads

The roads built on the slopes cause the loss of toe support. The change of the topography

and the loss of support lead to the increase of strain behind the slope and the development

of cracks. Instabilities occur in the slope because of the negative effects such as water

infiltration afterward. Also, a given road segment may act as a barrier, a net source, a net

sink or a corridor for water flow, and depending on its location in the area, it usually serves

as a source of landslides (Pradhan et al. 2010a). The detail road network map provided by

the Department of Survey, Nepal, was used to generate the distance from roads map

(Fig. 4i).
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6 Modeling approach

6.1 Certainty factor model

Certainty Factor (CF) is a model that has been applied by different researchers in landslide

susceptibility mapping (Kanungo et al. 2011; Gökçeolu et al. 2005). The CF approach is

one of the possible proposed favorability functions to handle the problem of combining

different data layers and the heterogeneity and uncertainty of the input data. The certainty

factors (CF) are given by the following equation:

CFij ¼

fij�f

fijð1�f Þ if fij � f

fij�f

f ð1�fijÞ
if fij � f

(

ð3Þ

where CFij is the certainty factor given to a certain class i of parameter j. fij is the

conditional probability having a number of landslide event occurring in class i of parameter

j and f is the prior probability having total number of landslide event occurring in the study

area.

The value of the certainty factor ranges between -1 and ?1. The minimum -1 means

definitely false and ?1 means definitely true. A positive value means an increasing cer-

tainty in landslide occurrence, while a negative value corresponds to a decreasing certainty

in landslide occurrence. A value close to 0 means that the prior probability is very similar

to the conditional one; hence, it is difficult to give any indication about the certainty of the

landslide occurrence (Pourghasemi et al. 2012e).

The CF values for all the condition factors were calculated by overlying landslides with

the parameter class, that is, by calculating the landslide density and the CF values of all the

layers using Eq. 3. Next, the CF values of the landslide conditioning factors were used for

creating various CF layers (Table 1). Then, the calculated CF layers were combined

pairwise. The combination of two CF values, X and Y, due to two different layers of

information, is expressed as Z in Eq. 4, given below:

Z ¼

X þ Y � XY X; Y � 0

XþY
1�min Xj j; Yj jð Þ X; Y Opposite sign

X þ Y þ XY X; Y\0

8

>

<

>

:

ð4Þ

The pairwise combination is performed repeatedly until all the CF layers are added to

obtain the landslide susceptibility index (LSI). To make the results easier to interpret, the

LSI values are grouped into susceptibility classes to create landslide susceptibility zonation

map for the study area. Several authors have applied various methods for dividing the LSI

map. In this study, natural break classification method (Constantin et al. 2011; Xu et al.

2012) was used to divide the interval into four classes and a susceptibility map was

prepared. Subsequently, the same classification approach was used for index of entropy and

logistic regression models.

6.2 Index of entropy model

The second model used for evaluating the landslide susceptibility in the present study is the

bivariate index of entropy model (Van Westen 2004). The method is based on the principle

of bivariate analysis, where the density of landslides within a certain parameter is deter-

mined. This approach allows calculation of the weight for each input variable. In the
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Table 1 Spatial relationship between each landslide conditioning factor and landslide by frequency ratio

and certainty factor

Factor Class No. of pixels

in domain

Percentage of

domain (a)

No. of

landslide

Percentage of

landslides (b)

Certainty

factor

Slope gradient

(�)

0–15 22,111 13.76 6 2.49 -0.82

15–25 30,542 19.01 45 18.67 -0.02

25–35 42,515 26.47 86 35.68 0.26

35–45 40,693 25.33 88 36.51 0.31

[45 24,776 15.42 16 6.64 -0.57

Slope aspect Flat 1,201 0.75 0 0 -1

North 29,104 18.12 31 12.86 -0.29

Northeast 18,906 11.77 20 8.3 -0.3

East 12,363 7.7 25 10.37 0.26

Southeast 11,936 7.43 31 12.86 0.42

South 18,154 11.3 43 17.84 0.37

Southwest 21,037 13.1 36 14.94 0.12

West 23,680 14.74 29 12.03 -0.18

Northwest 24,125 15.02 26 10.79 -0.28

Plan curvature Concave 73,478 45.74 114 47.3 0.03

Flat 2,127 1.32 0 0 -1

Convex 84,894 52.85 127 52.7 -0.003

Altitude (m) \350 25,421 15.83 43 17.84 0.11

350–501 34,691 21.6 73 30.29 0.29

501–650 27,266 16.97 47 19.5 0.13

651–800 25,533 15.89 39 16.18 0.02

800–950 24,907 15.51 19 7.88 -0.49

951–1,100 19,790 12.32 20 8.3 -0.33

1,101–1,250 2,357 1.47 0 0 -1

[1,250 6,72 0.42 0 0 -1

SPI 0–150 14,196 8.84 8 3.32 -0.62

150–300 19,750 12.29 39 16.18 0.24

300–450 14,807 9.22 21 8.72 -0.06

[450 111,884 69.65 173 71.78 0.03

TWI \8 86,989 54.15 148 61.41 0.12

10 51,763 32.22 73 30.29 -0.06

[10 21,885 13.62 20 8.3 -0.39

STI 0–40 22,258 13.86 17 7.05 -0.49

40–80 30,532 19.01 55 22.82 0.17

80–120 25,488 15.87 51 21.16 0.25

[120 82,359 51.27 118 48.96 -0.05

Land use Barren 220 0.14 0 0 -1

Bush 38,983 24.27 40 16.6 -0.32

Cultivation 49,758 30.98 117 48.55 0.36

Cutting 128 0.08 0 0 -1

Forest 994 0.62 0 0 -1
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Table 1 continued

Factor Class No. of pixels

in domain

Percentage of

domain (a)

No. of

landslide

Percentage of

landslides (b)

Certainty

factor

Grass 68,712 42.77 82 34.02 -0.2

Orchard 1,451 0.9 2 0.83 -0.08

River 255 0.16 0 0 -1

Sand 5 0.003 0 0 -1

Lithology Amphibolite 617 0.38 1 0.415 0.07

Benighat

Slates

16,221 10.1 24 9.96 -0.01

Dandagaun

Formation

849 0.53 0 0 -1

Dhading

Dolomite

26,709 16.63 26 10.79 -0.35

Purebesi

Quartzite

961 0.6 2 0.83 0.28

Kuncha

Formation

1,988 1.24 1 0.41 -0.66

Lower

Siwaliks

2,488 1.55 10 4.15 0.63

Middle

Siwaliks

65 0.04 1 0.41 0.9

Nourpul

Formation

82,099 51.11 122 50.62 -0.01

Fagfog

Quartzite

1,303 0.81 1 0.41 -0.49

Terrace

Deposits

27,206 16.94 55 22.82 0.26

Distance from

faults (m)

0–100 25,436 15.83 33 13.69 -0.14

100–200 22,302 13.88 42 17.43 0.2

200–300 20,801 12.95 34 14.11 0.08

300–400 17,733 11.04 30 12.45 0.11

400–500 15,127 9.42 29 12.03 0.22

[500 59,107 36.8 73 30.29 -0.18

Distance from

rivers (m)

0–50 54,983 34.23 100 41.49 0.17

50–100 38,565 24.01 58 24.07 0.002

100–150 26,264 16.35 39 16.18 -0.01

150–200 17,252 10.74 23 9.54 -0.11

[200 23,442 14.59 21 8.71 -0.4

Distance from

roads (m)

0–50 45,379 28.25 56 23.24 -0.18

50–100 30,591 19.04 50 20.75 0.08

100–150 22,536 14.03 33 13.69 -0.02

150–200 17,410 10.84 34 14.11 0.23

200–250 12,412 7.73 28 11.62 0.33

250–300 9,539 5.94 8 3.32 -0.44

[300 22,639 14.09 32 13.28 -0.06
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present model, the weighting process is based on the methodology proposed by Vlcko et al.

(1980). The weight value for each parameter taken separately is expressed as an entropy

index.

The weight parameter was obtained from the defined level of entropy representing the

approximation to normal distribution of the probability. The entropy index indicates the

extent of disorder in the environment. It also expresses which parameters in a natural

environment are most relevant for the development of mass movements (Bednarik et al.

2010). The equations used to calculate the information coefficient Wj representing the

weight value for the parameter as a whole are:

Pij ¼
Asd

At

ð5Þ

ðPijÞ ¼
Pij

PSj
j¼1 Pij

ð6Þ

Here, Hj and Hjmax are the entropy values (Eqs. 7, 8) and they are written as;

Hj ¼
X

Sj

i¼1

ðPijÞ log2ðPijÞ; j ¼ 1; . . .n ð7Þ

Hjmax ¼ log2 Sj; Sj is the number of classes ð8Þ

Ij is the information coefficient (Eq. 9) and Wj represents the resultant weight value for the

parameter as a whole (Eq. 10).

Ij ¼
Hjmax � Hj

Hjmax

ð9Þ

Wj ¼ Ij � Pj ð10Þ

The result varies from 0 to 1. The closer the value is to the number 1, the greater the

instability is.Here, Pj is the slope failure probability for (j ¼ 1; . . .; n). The complete cal-

culation of weight determination for individual parameters is presented in Table 2. The

final susceptibility value is expressed by the sum of all parameter classes, ranked according

to the calculated landslide density for each class. It is expressed as;

y ¼
X

n

i¼1

z

mi

� C �Wj ð11Þ

where y is the sum of all the classes; i is the number of particular parametric map

(1; 2; . . .; n); z is the number of classes within parametric map with the greatest number of

classes; mi is the number of classes within particular parametric map; C is the value of the

class after secondary classification and Wj is the weight of a parameter.

6.3 Logistic regression model

Logistic regression allows forming a multivariate regression relation between a dependent

variable and several independent variables. The dependent variable is dichotomous, while

the independent variable can be interval, dichotomous, or categorical (Atkinson and

Massari 1998). In the present situation, the dependent variable is a binary variable
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Table 2 Spatial relationship between each landslide conditioning factor and landslide by index of entropy

Model

Factor Class Percentage

of domain

Percentage of

landslide

Pij (Pij) Hj Hjmax Ij Wj

Slope gradient

(�)

0–15 13.76 2.49 0.18 0.04 2.05 2.32 0.12 0.101

15–25 19.01 18.67 0.98 0.22

25–35 26.47 35.68 1.35 0.31

35–45 25.33 36.51 1.44 0.33

[45 15.42 6.64 0.43 0.1

Slope aspect Flat 0.75 0 0 0 2.23 3.17 0.3 0.287

North 18.12 12.86 0.71 0.08

North East 11.77 8.3 0.71 0.08

East 7.7 10.37 1.35 0.15

South East 7.43 12.86 1.73 0.2

South 11.3 17.84 1.58 0.18

South West 13.1 14.94 1.14 0.13

West 14.74 12.03 0.82 0.09

North West 15.02 10.79 0.72 0.08

Plan curvature Concave 45.74 47.3 1.03 0.51 1 1.58 0.37 0.249

Flat 1.32 0 0 0

Convex 52.85 52.7 1 0.49

Altitude (m) \300 15.83 17.84 1.13 0.19 1.59 3 0.47 0.344

300–500 21.6 30.29 1.4 0.24

500–650 16.97 19.5 1.15 0.2

650–800 15.89 16.18 1.02 0.17

800–950 15.51 7.88 0.51 0.09

950–1,100 12.32 8.3 0.67 0.11

1,100–1,250 1.47 0 0 0

[1,250 0.42 0 0 0

SPI 0–150 8.84 3.32 0.38 0.1 1.89 2 0.06 0.052

150–300 12.29 16.18 1.32 0.36

300–450 9.22 8.72 0.95 0.26

[450 69.65 71.78 1.03 0.28

TWI \8 54.15 61.41 1.13 0.42 1.54 1.58 0.03 0.025

10 32.22 30.29 0.94 0.35

[10 13.62 8.3 0.61 0.23

STI 0–40 13.86 7.05 0.51 0.13 1.92 2 0.04 0.039

40–80 19.01 22.82 1.2 0.3

80–120 15.87 21.16 1.33 0.33

[120 51.27 48.96 0.95 0.24

Land use Barren 0.14 0 0 0 1.92 3.17 0.39 0.174

Bush 24.27 16.6 0.68 0.17

Cultivation 30.98 48.55 1.57 0.39

Cutting 0.08 0 0 0

Forest 0.62 0 0 0
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Table 2 continued

Factor Class Percentage

of domain

Percentage of

landslide

Pij (Pij) Hj Hjmax Ij Wj

Grass 42.77 34.02 0.8 0.2

Orchard 0.9 0.83 0.92 0.23

River 0.16 0 0 0

Sand 0.003 0 0 0

Lithology Amphibolite 0.38 0.415 1.09 0.05 2.45 3.46 0.29 0.536

Benighat

Slates

10.1 9.96 0.99 0.05

Dandagaun

Formation

0.53 0 0 0

Dhading

Dolomite

16.63 10.79 0.65 0.03

Purebesi

Quartzite

0.6 0.83 1.38 0.07

Kuncha

Formation

1.24 0.41 0.33 0.02

Lower

Siwaliks

1.55 4.15 2.68 0.13

Middle

Siwaliks

0.04 0.41 10.3 0.51

Nourpul

Formation

51.11 50.62 0.99 0.05

Fagfog

Quartzite

0.81 0.41 0.51 0.03

Terrace

Deposits

16.94 22.82 1.35 0.07

Distance from

faults (m)

0–100 15.83 13.69 0.86 0.13 2.57 2.58 0.01 0.008

100–200 13.88 17.43 1.26 0.2

200–300 12.95 14.11 1.09 0.17

300–400 11.04 12.45 1.13 0.18

400–500 9.42 12.03 1.28 0.2

[500 36.8 30.29 0.82 0.13

Distance from

rivers (m)

0–50 34.23 41.49 1.21 0.26 2.29 2.32 0.01 0.014

50–100 24.01 24.07 1 0.21

100–150 16.35 16.18 0.99 0.21

150–200 10.74 9.54 0.89 0.19

[200 14.59 8.71 0.6 0.13

Distance from

roads (m)

0–50 28.25 23.24 0.82 0.11 2.75 2.81 0.02 0.021

50–100 19.04 20.75 1.09 0.15

100–150 14.03 13.69 0.98 0.14

150–200 10.84 14.11 1.3 0.18

200–250 7.73 11.62 1.5 0.21

250–300 5.94 3.32 0.56 0.08

[300 14.09 13.28 0.94 0.13
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representing the presence or absence of landslides. The logistic model can be expressed in

its simplest form as:

p ¼
expðzÞ

ð1þ expðzÞÞ
ð12Þ

where p is the probability of an event (landslide) occurrence, which varies from 0 to 1 on

an s-shaped curve; z is defined as the following equation (linear logistic model), and its

value varies from -? to ??:

Z ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn ð13Þ

where 0 represents the intercept of model, 1; 2; . . .; n the partial regression coefficients,

X1;X2; . . .;Xn represent the independent variables. The logistic regression model involves

fitting of Eq. 13 to the data and then expressing the probability of the presence/absence of

landslides in each mapping unit. The relative contribution of each mapping unit to the

logistic function can be obtained by looking at the significance of each regression

parameter. The logistic regression analysis was performed using the SPSS statistical

software. Firstly, all the conditioning factors and landslides were converted into grid

format, and then, these grid maps are converted into ACSII data format (Acronym for the

American Standard Code for Information Interchange). The ASCII data of each map was

exported to SPSS, and then the logistic regression model was run to obtain the coefficients

of the landslide conditioning factors.

7 Results and discussion

7.1 Certainty factor (CF) model

The correlation between the location of landslides and the landslide conditioning factors

was performed. The final landslide susceptibility map obtained by CF model is shown in

Fig. 5. The CF values were reckoned for all conditioning factors by overlaying and cal-

culating the landslide frequency (Table 1). Then, the CF values of twelve landslide con-

ditioning factors were determined using Eq. 3. The results of spatial relationship between

landslide and conditioning factors using CF model are given in Table 1.

The slope class 35�–45� has the highest value of CF(0.31) followed by 25�–35� class

(0.26). The lowest value of CF(-0.82) is for slope class 0�–15�. From this, it is clear that

the landslide occurrence increases by the increase in slope gradient up to a certain extent,

and then, it decreases. Few landslides occur on a very gentle slope and the landslide

occurrence decreases as the slope becomes higher than 45�. In the case of slope aspect, the

CF value is positive for east to southwest-facing slope facing, with the maximum value

(0.42) at southeast-facing slope followed by south-facing (0.37) slope. The north-facing

slopes are less prone to landslides as they have negative CF value. The CF values of

altitude show that they are positive for the ranges of\350, 350–500, 500–650, 650–800,

with the highest value (0.29) for the altitude ranging between 350 and 500 m. The CF

value decreases with both the increase and decrease in altitude. It becomes negative after

800 m. This shows that the probability of landslide occurrence decreases as the altitude

becomes higher than 800 m. In the case of curvature, the CF value is positive (0.03) only

on concave slopes. The convex and flat slopes are not responsible for landslide hazard in

this area. For the geology, it can be seen that the Middle Siwaliks (CF = 0.9), Lower
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Siwaliks (CF = 0.63), Purebesi Quartzite (CF = 0.28), alluvial deposits (CF = 0.26), and

amphibolites (CF = 0.07) are found to be more susceptible to sliding (Table 1). In the case

of land use, positive value of CF is seen only on cultivation land. This may be due to the

unplanned excavation of slope during agricultural activities, as well as due to the increase

in moisture content during the irrigation process. In the case of distance from faults, the

intervals 100–200, 200–300, 300–400, and 400–500 m have weights (CF) of 0.2, 0.08, 0.11

and 0.654, respectively. The influence of drainage system upon the landslide susceptibility

was also analyzed by identifying the drainage river line by buffering. The distance range of

0–50 m (0.17) has the highest CF value, followed by 0–100 m (0.002). This indicates that

the landslide occurrence decreases with the increase in distance from the river. In the case

of distance form roads, the intervals 150–200 (0.23) and 200–250 (0.33) have higher CF

values, that is, the landslide susceptibility is higher in these ranges. The relation between

TWI landslide probabilities showed that 0–8 class has the highest value of CF (0.12), and

for SPI, the class of 150–300 shows a high CF value (0.24). Similarly, for sediment

transport index, the highest CF value was obtained for the interval of 40–120 m.

7.2 Index of entropy (IOE) model

The procedure for calculating the final weightWj of the conditioning factors is explained in

the earlier section, and the result is presented in Table 2. The final landslide susceptibility

map was prepared by summing of weighted multiplications of the secondarily reclassified

conditioning factors maps as given by Eq. 14 (Fig. 6)

Fig. 5 Landslide susceptibility map based on certainty factor (CF) model
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y ¼ Slopereclass � 0:101þ Aspectreclass � 0:287þ Altitudereclass � 0:344

þ Plan curvaturereclass � 0:249þ Geologreclass � 0:536

þ Distance from faultsreclass � 0:008þ Distance from riversreclass

� 0:014þ Distance from roadsreclass � 0:021þ TWIreclass � 0:025

þ SPIreclass � 0:052þ STIreclass � 0:039þ Land usereclass � 0:174

ð14Þ

From the result (Pij), it is seen that slope interval of 35�–45� is highly prone to landslide

followed by the slope class 25�–35�. In the case of aspect, southeast-facing slopes followed

by south-facing, east-facing, and southwest-facing slopes are susceptible to landsliding.

From the Wj value, it is seen that the lithology has the highest impact in the landslide

susceptibility, followed by altitude, aspect, slope, and land use, while others are less

significant in the landslide susceptibility of the region. It is seen that slope in the case of

curvature, the concave slope is most susceptible to landslides, followed by convex slope.

The slopes ranging in altitude between 350 and 500 m have the highest (Pij) value of 1.4,

followed by 500–650 m (1.15), 200–350 m (1.13), and 650–800 m (1.02) intervals. It is

seen that the landslide density increases from 200 to 500 m, and it gradually decreases

from 500 m upward. From the analysis of (Pij) value of geology, it is seen that the Middle

Siwaliks, Lower Siwaliks, alluvial deposits, Purebesi Quartzite followed by amphibolites

are more susceptible to landslides. In the case of distance from faults, 400–500 m range

has the highest Pij value (1.28) followed by 100–200 m (1.26), 300–400 m (1.13), and

Fig. 6 Landslide susceptibility map derived from the index of entropy (IOE) model
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200–300 m (1.09). The distance from rivers shows that the Pij value decreases as the

distance from river increases. From this, it is clear that the bank erosion is one of the main

triggering factors. Most of the landslides are located at a distance of 200–250 m from the

road section as the values of (Pij) is highest (0.2) here. It decreases with both the increase

Table 3 Coefficients of each thematic map used in logistic regression modeling

Factor Class b

Slope 0.0214

Flat -13.2269

North -0.106

Northeast 0.1073

Aspect East 0.8568

Southeast 0.3029

South 0.5532

Southwest 0.1169

West -0.1373

Northwest 0

Curvature 0.0221

Altitude 0.08

SPI 0.038

TWI -0.2813

STI -0.002

Lithology Terrace Deposits 0.606

Middle Siwaliks 2.369

Lower Siwaliks 0.591

Benighat Slates 0.369

Dhading Dolomite -0.598

Nourpul Formation 0.294

Purebesi Quartzite -0.341

Amphibolites 0.127

Dandagaun Formation -14.34

Fagfog Quartzite -14.511

Kuncha Formation 0

Land use Barren 14.447

Bush 12.814

Cultivation 13.445

Cutting -1.555

Forest -1.508

Grass 12.954

Orchard 13.108

River -1.264

Sand 0

Distance form faults -0.000041

Distance form roads -0.00038

Distance form rivers -0.0004

Constant is -18.991
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and decrease of distance from the road. In the case of TWI (Pij), the value decreases with

increasing TWI, it is highest (0.42) for class 0–8. This shows that TWI strongly affects the

landslide occurrence. In the case of SPI, class 150–300 has the highest (Pij) value, while for

STI, the range between 80 and120 has the highest (Pij) value, indicating that this range is

most susceptible to landsliding. The cultivation land has the highest (Pij) value of 1.57 and

is the main land use type that is most susceptible for landsliding.

7.3 Logistic regression model

The resultant beta (b) coefficients for each independent variable in the logistic regression

equation are given in Table 3. Based on the obtained result, Eq. 15 can be rewritten as

z ¼ ð0:0214� SlopeÞ þ Aspectþ ð0:08� AltitudeÞ þ ð0:0221� Plan curvatureÞ

þ ð0:038� SPIÞ þ ð�0:2831� TWIÞ þ ð�0:002� STIÞ þ Lithology

þ Land useþ ð�0:000041� Distance from faultsÞ

þ ð�0:00038� Distance from roadsÞ

þ ð�0:0004� Distance from riversÞ � 18:991

ð15Þ

Finally, landslide susceptibility index (LSI) map is obtained by using the raster calculator

in ArcGIS 9.3 (Fig. 7).

From the analysis of logistic regression coefficients, it is seen that slope angle, cur-

vature, and SPI have prominent role in the landslide susceptibility of the area, as they all

have positive b value. Also, it is seen that SPI has highest b coefficient (0.038), followed

Fig. 7 Landslide susceptibility map derived from the logistic regression (LR) model
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by curvature (0.0221) and slope (0.0214). Distance from fault, road, river, and TWI has

negative effect in landslide formation as they all have negative b coefficient and hence are

considered to be less significant in landslide formation on the road section. In the case of

aspect, the slope trending toward east (b = 0.8658), south (b = 0.5532), southeast

(b = 0.3029), and west (b = 0.1169) has high probability of landslide susceptibility as

they have positive b coefficient. As far as the geology is concerned, the Middle Siwaliks

(b = 2.369) are most susceptible to sliding. Alluvial deposits (b = 0.606), consisting of

loose sediments, also show a higher susceptibility. The Lower Siwaliks (b = 0.591) are

also highly prone to landsliding; the Benighat Slates (b = 0.369), Nourpul Formation

(b = 0.294), and Amphibolites (b = 0.127) all have positive b coefficient and hence are

more susceptible to landsliding than the rest. In the case of land use, barren land

(b = 14.447), cultivated land (b = 13.445), orchard (b = 13.108), followed by bush

(b = 12.814), and grassland (b = 12.954) have the susceptibility levels in decreasing

order, while the remaining land use types does not have any role in landslide susceptibility

of the region.

7.4 Validation of the landslide susceptibility maps

The landslide susceptibility maps derived by three models were tested using the landslide

data sets that were used for model building process as well as from those that were not used

in model building process. For this, the total landslides observed in the study area were

split into 2 parts, 241 (75 %) was randomly selected from the total 321 landslides as the

training data and the remaining 80 (25 %) landslides are kept for validation propose.

Spatial effectiveness of these susceptibility maps was checked by receiver operating

characteristics (ROC).

The ROC curve is a useful method for representing the quality of deterministic and

probabilistic detection and forecast systems (Swets 1988). The ROC can be represented

equivalently by plotting the fraction of true positives out of the positives versus the fraction

of false positives out of the negatives, for a binary classifier system as its discrimination

threshold is varied (Table 4). By tradition, the plot shows the false-positive rate (1 spec-

ificity) on the x-axis (Eq. 16) and the true-positive rate (the sensitivity or 1—the false-

negative rate) on the y-axis (Eq. 17).

X ¼ 1 ¼ specifity ¼ 1�
TN

ðTNþ FPÞ

� �

ð16Þ

Y ¼ sensitivity
TN

ðTpþ FNÞ

� �

ð17Þ

The area under the ROC curve (AUC) characterizes the quality of a forecast system by

describing the system’s ability to predict correctly the occurrence or non-occurrence of

predefined ‘events’. The model with higher AUC is considered to be the best. If the area

under the ROC curve (AUC) is close to 1, the result of the test is excellent. On the other

Table 4 Parameters for the calculation of ROC curve (modified from Swets 1988)

Landslide bodies Landslide free areas

Landslide occurrence based on calculated function True positive (TP) False positive (FP)

Safe areas based on calculated function False negative (FN) True negative (TN)

Nat Hazards (2013) 65:135–165 157

123



hand, if the model does not predict well, then this value will be close to 0.5. Both the

success rate and prediction rate of the models were used for assessing the prediction

capability of the models.

The success rate results were obtained by comparing the landslide training data with the

susceptibility maps (Fig. 8a). From the figure, it is seen that the index of entropy model

(IOE) has the highest area under the curve (AUC) value (0.8915), followed by logistic

regression model (0.8910) and certainty factor model (0.8721). Since the success rate

method used the training landslide data that have already been used for building the

landslide models, the success rate is not a suitable method for assessing the prediction

capability of the models (Bui et al. 2011). However, this method is useful to know the

performance of the models. Thus, the validations of the models were done by using the

prediction rate curve. The prediction rate explains how well the model and predictor

Fig. 8 Area under the curve (AUC) for the landslide susceptibility maps produced by three models.

a Success rate graph, and b prediction rate graphs
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variable predicts the landslide (Lee 2007). Also, the prediction rate curve shows that the

index of entropy has the highest area under curve (AUC) value (0.9016), while logistic

regression model and certainty factor model have (0.8629) and (0.8357) value of (AUC),

respectively. From this, it is seen that both the success rate and prediction rate curve show

almost similar result, and the all the models employed in this study showed reasonably

good accuracy in predicting the landslide susceptibility of the road section.

8 Conclusions

Since landslides pose a serious threat to the life and property, their susceptibility mapping

can be one of the preliminary steps toward minimizing the damages incurred by them. A

landslide susceptibility map divides an area into various categories that range from stable

to unstable ones. In this research, two bivariate models (i.e., certainty factor and index of

entropy models) and one multivariate model (i.e., logistic regression) were used for

identifying the areas susceptible to landsliding at Mugling–Narayanghat road and its

surrounding areas.

For this purpose, twelve landslide conditioning factors (i.e., slope gradient; slope aspect;

altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topo-

graphic wetness index (TWI); stream power index (SPI); and sediment transport index (STI))

were used. A landslide inventory map was prepared using aerial photographs, satellite

images, and extensive field survey. In this process, a total of 321 landslides were identified

and mapped. Out of which, 241 (75 %) were randomly selected for generating a model and

the remaining 80 (25 %) were used for validation proposes. The ROC plots showed that the

susceptibility map produced using the index of entropy model has the highest perdition

accuracy (90.16 %), followed by the logistic regression model (86.29 %) and the certainty

factor model (83.57 %). Success rate curve also gives similar result, with index of entropy

model (IOE) the highest (AUC) value (0.8915), followed by logistic regression model

(0.8910) and certainty factor model (0.8721). This shows that all themodels employed in this

study showed reasonably good accuracy in predicting the landslide susceptibility of Mu-

gling–Narayanghat road section. The increasing population pressure has forced people to

concentrate their activities on steep mountain slopes. Thus, to safeguard the life and property

from landslides, the susceptibility maps can be used as basic tools in land management and

planning future construction projects in this area. While the low susceptibility zones are

relatively safe for the development of infrastructures, the high and very high susceptibility

zones require further engineering geological and geotechnical considerations.
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